Papers
Topics
Authors
Recent
2000 character limit reached

Bridging Granularity Gaps: Hierarchical Semantic Learning for Cross-domain Few-shot Segmentation (2511.12200v1)

Published 15 Nov 2025 in cs.CV

Abstract: Cross-domain Few-shot Segmentation (CD-FSS) aims to segment novel classes from target domains that are not involved in training and have significantly different data distributions from the source domain, using only a few annotated samples, and recent years have witnessed significant progress on this task. However, existing CD-FSS methods primarily focus on style gaps between source and target domains while ignoring segmentation granularity gaps, resulting in insufficient semantic discriminability for novel classes in target domains. Therefore, we propose a Hierarchical Semantic Learning (HSL) framework to tackle this problem. Specifically, we introduce a Dual Style Randomization (DSR) module and a Hierarchical Semantic Mining (HSM) module to learn hierarchical semantic features, thereby enhancing the model's ability to recognize semantics at varying granularities. DSR simulates target domain data with diverse foreground-background style differences and overall style variations through foreground and global style randomization respectively, while HSM leverages multi-scale superpixels to guide the model to mine intra-class consistency and inter-class distinction at different granularities. Additionally, we also propose a Prototype Confidence-modulated Thresholding (PCMT) module to mitigate segmentation ambiguity when foreground and background are excessively similar. Extensive experiments are conducted on four popular target domain datasets, and the results demonstrate that our method achieves state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: