Papers
Topics
Authors
Recent
2000 character limit reached

Combining Serverless and High-Performance Computing Paradigms to support ML Data-Intensive Applications (2511.12185v1)

Published 15 Nov 2025 in cs.DC

Abstract: Data is found everywhere, from health and human infrastructure to the surge of sensors and the proliferation of internet-connected devices. To meet this challenge, the data engineering field has expanded significantly in recent years in both research and industry. Traditionally, data engineering, Machine Learning, and AI workloads have been run on large clusters within data center environments, requiring substantial investment in hardware and maintenance. With the rise of the public cloud, it is now possible to run large applications across nodes without owning or maintaining hardware. Serverless functions such as AWS Lambda provide horizontal scaling and precise billing without the hassle of managing traditional cloud infrastructure. However, when processing large datasets, users often rely on external storage options that are significantly slower than direct communication typical of HPC clusters. We introduce Cylon, a high-performance distributed data frame solution that has shown promising results for data processing using Python. We describe how we took inspiration from the FMI library and designed a serverless communicator to tackle communication and performance issues associated with serverless functions. With our design, we demonstrate that the performance of AWS Lambda falls below one percent of strong scaling experiments compared to serverful AWS (EC2) and HPCs based on implementing direct communication via NAT Traversal TCP Hole Punching.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.