Papers
Topics
Authors
Recent
2000 character limit reached

AI-Enhanced IoT Systems for Predictive Maintenance and Affordability Optimization in Smart Microgrids: A Digital Twin Approach (2511.12175v1)

Published 15 Nov 2025 in eess.SY and cs.AI

Abstract: This study presents an AI enhanced IoT framework for predictive maintenance and affordability optimization in smart microgrids using a Digital Twin modeling approach. The proposed system integrates real time sensor data, machine learning based fault prediction, and cost aware operational analytics to improve reliability and energy efficiency in distributed microgrid environments. By synchronizing physical microgrid components with a virtual Digital Twin, the framework enables early detection of component degradation, dynamic load management, and optimized maintenance scheduling. Experimental evaluations demonstrate improved predictive accuracy, reduced operational downtime, and measurable cost savings compared to baseline microgrid management methods. The findings highlight the potential of Digital Twin driven IoT architectures as a scalable solution for next generation intelligent and affordable energy systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.