Papers
Topics
Authors
Recent
2000 character limit reached

Towards Obstacle-Avoiding Control of Planar Snake Robots Exploring Neuro-Evolution of Augmenting Topologies (2511.12148v1)

Published 15 Nov 2025 in cs.RO

Abstract: This work aims to develop a resource-efficient solution for obstacle-avoiding tracking control of a planar snake robot in a densely cluttered environment with obstacles. Particularly, Neuro-Evolution of Augmenting Topologies (NEAT) has been employed to generate dynamic gait parameters for the serpenoid gait function, which is implemented on the joint angles of the snake robot, thus controlling the robot on a desired dynamic path. NEAT is a single neural-network based evolutionary algorithm that is known to work extremely well when the input layer is of significantly higher dimension and the output layer is of a smaller size. For the planar snake robot, the input layer consists of the joint angles, link positions, head link position as well as obstacle positions in the vicinity. However, the output layer consists of only the frequency and offset angle of the serpenoid gait that control the speed and heading of the robot, respectively. Obstacle data from a LiDAR and the robot data from various sensors, along with the location of the end goal and time, are employed to parametrize a reward function that is maximized over iterations by selective propagation of superior neural networks. The implementation and experimental results showcase that the proposed approach is computationally efficient, especially for large environments with many obstacles. The proposed framework has been verified through a physics engine simulation study on PyBullet. The approach shows superior results to existing state-of-the-art methodologies and comparable results to the very recent CBRL approach with significantly lower computational overhead. The video of the simulation can be found here: https://sites.google.com/view/neatsnakerobot

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.