Papers
Topics
Authors
Recent
2000 character limit reached

Guessing Decoding of Short Blocklength Codes (2511.12108v1)

Published 15 Nov 2025 in cs.IT

Abstract: Future beyond-5G and 6G systems demand ultra-reliable, low-latency communication with short blocklengths, motivating the development of universal decoding algorithms. Guessing decoding, which infers the noise or codeword candidate in order of decreasing (exact or approximate) likelihood, offers a universal framework applicable to short codes. In this paper, we present a unified treatment of two prominent recent families of guessing decoding: guessing random additive noise decoding (GRAND) and guessing codeword decoding (GCD). For each, we (i) present algorithmic implementations and ordering strategies; (ii) prove maximum-likelihood (ML) optimality under appropriate stopping criteria; (iii) derive saddle-point approximations for the average number of queries; and (iv) validate theoretical predictions with simulations. We further analyze the performance degradation due to limited search budgets relative to ML performance, compare key metrics (worst-case and average complexity, hardware considerations), and highlight how advances in one approach transfer naturally to the other. Our results clarify the operating regimes where GRAND and GCD demonstrate superior performance. This work provides both theoretical insights and practical guidelines for deploying universal guessing decoders in next-generation short-blocklength communications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.