Papers
Topics
Authors
Recent
2000 character limit reached

Generalized gradient flows in Hadamard manifolds and convex optimization on entanglement polytopes (2511.12064v1)

Published 15 Nov 2025 in math.OC and math.DG

Abstract: In this paper, we address the optimization problem of minimizing $Q(df_x)$ over a Hadamard manifold ${\cal M}$, where $f$ is a convex function on ${\cal M}$, $df_x$ is the differential of $f$ at $x \in {\cal M}$, and $Q$ is a function on the cotangent bundle of ${\cal M}$. This problem generalizes the problem of minimizing the gradient norm $|\nabla f(x)|$ over ${\cal M}$, studied by Hirai and Sakabe FOCS2024. We formulate a natural class of $Q$ in terms of convexity and invariance under parallel transports, and introduce a generalization of the gradient flow of $f$ that is expected to minimize $Q(df_x)$. For basic classes of manifolds, including the product of the manifolds of positive definite matrices, we prove that this gradient flow attains $\inf_{x\in {\cal M}} Q(df_x)$ in the limit, and yields a duality relation. This result is applied to the Kempf-Ness optimization for GL-actions on tensors, which is Euclidean convex optimization on the class of moment polytopes, known as the entanglement polytopes. This type of convex optimization arises from tensor-related subjects in theoretical computer science, such as quantum functional, $G$-stable rank, and noncommutative rank.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.