Papers
Topics
Authors
Recent
2000 character limit reached

SBAMP: Sampling Based Adaptive Motion Planning (2511.12022v1)

Published 15 Nov 2025 in cs.RO and eess.SY

Abstract: Autonomous robotic systems must navigate complex, dynamic environments in real time, often facing unpredictable obstacles and rapidly changing conditions. Traditional sampling-based methods, such as RRT*, excel at generating collision-free paths but struggle to adapt to sudden changes without extensive replanning. Conversely, learning-based dynamical systems, such as the Stable Estimator of Dynamical Systems (SEDS), offer smooth, adaptive trajectory tracking but typically rely on pre-collected demonstration data, limiting their generalization to novel scenarios. This paper introduces Sampling-Based Adaptive Motion Planning (SBAMP), a novel framework that overcomes these limitations by integrating RRT* for global path planning with a SEDS-based local controller for continuous, adaptive trajectory adjustment. Our approach requires no pre-trained datasets and ensures smooth transitions between planned waypoints, maintaining stability through Lyapunov-based guarantees. We validate SBAMP in both simulated environments and real hardware using the RoboRacer platform, demonstrating superior performance in dynamic obstacle scenarios, rapid recovery from perturbations, and robust handling of sharp turns. Experimental results highlight SBAMP's ability to adapt in real time without sacrificing global path optimality, providing a scalable solution for dynamic, unstructured environments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.