Enhancing Road Safety Through Multi-Camera Image Segmentation with Post-Encroachment Time Analysis (2511.12018v1)
Abstract: Traffic safety analysis at signalized intersections is vital for reducing vehicle and pedestrian collisions, yet traditional crash-based studies are limited by data sparsity and latency. This paper presents a novel multi-camera computer vision framework for real-time safety assessment through Post-Encroachment Time (PET) computation, demonstrated at the intersection of H Street and Broadway in Chula Vista, California. Four synchronized cameras provide continuous visual coverage, with each frame processed on NVIDIA Jetson AGX Xavier devices using YOLOv11 segmentation for vehicle detection. Detected vehicle polygons are transformed into a unified bird's-eye map using homography matrices, enabling alignment across overlapping camera views. A novel pixel-level PET algorithm measures vehicle position without reliance on fixed cells, allowing fine-grained hazard visualization via dynamic heatmaps, accurate to 3.3 sq-cm. Timestamped vehicle and PET data is stored in an SQL database for long-term monitoring. Results over various time intervals demonstrate the framework's ability to identify high-risk regions with sub-second precision and real-time throughput on edge devices, producing data for an 800 x 800 pixel logarithmic heatmap at an average of 2.68 FPS. This study validates the feasibility of decentralized vision-based PET analysis for intelligent transportation systems, offering a replicable methodology for high-resolution, real-time, and scalable intersection safety evaluation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.