Papers
Topics
Authors
Recent
2000 character limit reached

On the Trade-Off Between Transparency and Security in Adversarial Machine Learning

Published 14 Nov 2025 in cs.LG, cs.CR, and cs.GT | (2511.11842v1)

Abstract: Transparency and security are both central to Responsible AI, but they may conflict in adversarial settings. We investigate the strategic effect of transparency for agents through the lens of transferable adversarial example attacks. In transferable adversarial example attacks, attackers maliciously perturb their inputs using surrogate models to fool a defender's target model. These models can be defended or undefended, with both players having to decide which to use. Using a large-scale empirical evaluation of nine attacks across 181 models, we find that attackers are more successful when they match the defender's decision; hence, obscurity could be beneficial to the defender. With game theory, we analyze this trade-off between transparency and security by modeling this problem as both a Nash game and a Stackelberg game, and comparing the expected outcomes. Our analysis confirms that only knowing whether a defender's model is defended or not can sometimes be enough to damage its security. This result serves as an indicator of the general trade-off between transparency and security, suggesting that transparency in AI systems can be at odds with security. Beyond adversarial machine learning, our work illustrates how game-theoretic reasoning can uncover conflicts between transparency and security.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.