Papers
Topics
Authors
Recent
2000 character limit reached

Real-Time Speech Enhancement via a Hybrid ViT: A Dual-Input Acoustic-Image Feature Fusion (2511.11825v1)

Published 14 Nov 2025 in cs.SD, cs.AI, and eess.AS

Abstract: Speech quality and intelligibility are significantly degraded in noisy environments. This paper presents a novel transformer-based learning framework to address the single-channel noise suppression problem for real-time applications. Although existing deep learning networks have shown remarkable improvements in handling stationary noise, their performance often diminishes in real-world environments characterized by non-stationary noise (e.g., dog barking, baby crying). The proposed dual-input acoustic-image feature fusion using a hybrid ViT framework effectively models both temporal and spectral dependencies in noisy signals. Designed for real-world audio environments, the proposed framework is computationally lightweight and suitable for implementation on embedded devices. To evaluate its effectiveness, four standard and commonly used quality measurements, namely PESQ, STOI, Seg SNR, and LLR, are utilized. Experimental results obtained using the Librispeech dataset as the clean speech source and the UrbanSound8K and Google Audioset datasets as the noise sources, demonstrate that the proposed method significantly improves noise reduction, speech intelligibility, and perceptual quality compared to the noisy input signal, achieving performance close to the clean reference.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.