Mixture-of-Schedulers: An Adaptive Scheduling Agent as a Learned Router for Expert Policies (2511.11628v1)
Abstract: Modern operating system schedulers employ a single, static policy, which struggles to deliver optimal performance across the diverse and dynamic workloads of contemporary systems. This "one-policy-fits-all" approach leads to significant compromises in fairness, throughput, and latency, particularly with the rise of heterogeneous hardware and varied application architectures. This paper proposes a new paradigm: dynamically selecting the optimal policy from a portfolio of specialized schedulers rather than designing a single, monolithic one. We present the Adaptive Scheduling Agent (ASA), a lightweight framework that intelligently matches workloads to the most suitable "expert" scheduling policy at runtime. ASA's core is a novel, low-overhead offline/online approach. First, an offline process trains a universal, hardware-agnostic machine learning model to recognize abstract workload patterns from system behaviors. Second, at runtime, ASA continually processes the model's predictions using a time-weighted probability voting algorithm to identify the workload, then makes a scheduling decision by consulting a pre-configured, machine-specific mapping table to switch to the optimal scheduler via Linux's sched_ext framework. This decoupled architecture allows ASA to adapt to new hardware platforms rapidly without expensive retraining of the core recognition model. Our evaluation, based on a novel benchmark focused on user-experience metrics, demonstrates that ASA consistently outperforms the default Linux scheduler (EEVDF), achieving superior results in 86.4% of test scenarios. Furthermore, ASA's selections are near-optimal, ranking among the top three schedulers in 78.6% of all scenarios. This validates our approach as a practical path toward more intelligent, adaptive, and responsive operating system schedulers.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.