Papers
Topics
Authors
Recent
2000 character limit reached

Characterizing and Understanding Energy Footprint and Efficiency of Small Language Model on Edges (2511.11624v1)

Published 7 Nov 2025 in cs.DC, cs.AI, cs.CL, and cs.LG

Abstract: Cloud-based LLMs and their variants have significantly influenced real-world applications. Deploying smaller models (i.e., small LLMs (SLMs)) on edge devices offers additional advantages, such as reduced latency and independence from network connectivity. However, edge devices' limited computing resources and constrained energy budgets challenge efficient deployment. This study evaluates the power efficiency of five representative SLMs - Llama 3.2, Phi-3 Mini, TinyLlama, and Gemma 2 on Raspberry Pi 5, Jetson Nano, and Jetson Orin Nano (CPU and GPU configurations). Results show that Jetson Orin Nano with GPU acceleration achieves the highest energy-to-performance ratio, significantly outperforming CPU-based setups. Llama 3.2 provides the best balance of accuracy and power efficiency, while TinyLlama is well-suited for low-power environments at the cost of reduced accuracy. In contrast, Phi-3 Mini consumes the most energy despite its high accuracy. In addition, GPU acceleration, memory bandwidth, and model architecture are key in optimizing inference energy efficiency. Our empirical analysis offers practical insights for AI, smart systems, and mobile ad-hoc platforms to leverage tradeoffs from accuracy, inference latency, and power efficiency in energy-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.