Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification (2511.11460v1)

Published 14 Nov 2025 in cs.CV

Abstract: Multimodal classification in remote sensing often suffers from missing modalities caused by environmental interference, sensor failures, or atmospheric effects, which severely degrade classification performance. Existing two-stage adaptation methods are computationally expensive and assume complete multimodal data during training, limiting their generalization to real-world incompleteness. To overcome these issues, we propose a Missing-aware Mixture-of-Loras (MaMOL) framework that reformulates modality missing as a multi-task learning problem. MaMOL introduces a dual-routing mechanism: a task-oriented dynamic router that adaptively activates experts for different missing patterns, and a modality-specific-shared static router that maintains stable cross-modal knowledge sharing. Unlike prior methods that train separate networks for each missing configuration, MaMOL achieves parameter-efficient adaptation via lightweight expert updates and shared expert reuse. Experiments on multiple remote sensing benchmarks demonstrate superior robustness and generalization under varying missing rates, with minimal computational overhead. Moreover, transfer experiments on natural image datasets validate its scalability and cross-domain applicability, highlighting MaMOL as a general and efficient solution for incomplete multimodal learning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.