Papers
Topics
Authors
Recent
2000 character limit reached

Model Class Selection (2511.11355v1)

Published 14 Nov 2025 in stat.ME and stat.ML

Abstract: Classical model selection seeks to find a single model within a particular class that optimizes some pre-specified criteria, such as maximizing a likelihood or minimizing a risk. More recently, there has been an increased interest in model set selection (MSS), where the aim is to identify a (confidence) set of near-optimal models. Here, we generalize the MSS framework further by introducing the idea of model class selection (MCS). In MCS, multiple model collections are evaluated, and all collections that contain at least one optimal model are sought for identification. Under mild conditions, data splitting based approaches are shown to provide general solutions for MCS. As a direct consequence, for particular datasets we are able to investigate formally whether classes of simpler and more interpretable statistical models are able to perform on par with more complex black-box machine learning models. A variety of simulated and real-data experiments are provided.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: