Papers
Topics
Authors
Recent
2000 character limit reached

On-line learning of dynamic systems: sparse regression meets Kalman filtering (2511.11178v1)

Published 14 Nov 2025 in cs.LG

Abstract: Learning governing equations from data is central to understanding the behavior of physical systems across diverse scientific disciplines, including physics, biology, and engineering. The Sindy algorithm has proven effective in leveraging sparsity to identify concise models of nonlinear dynamical systems. In this paper, we extend sparsity-driven approaches to real-time learning by integrating a cornerstone algorithm from control theory -- the Kalman filter (KF). The resulting Sindy Kalman Filter (SKF) unifies both frameworks by treating unknown system parameters as state variables, enabling real-time inference of complex, time-varying nonlinear models unattainable by either method alone. Furthermore, SKF enhances KF parameter identification strategies, particularly via look-ahead error, significantly simplifying the estimation of sparsity levels, variance parameters, and switching instants. We validate SKF on a chaotic Lorenz system with drifting or switching parameters and demonstrate its effectiveness in the real-time identification of a sparse nonlinear aircraft model built from real flight data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.