Papers
Topics
Authors
Recent
2000 character limit reached

AI Agent-Driven Framework for Automated Product Knowledge Graph Construction in E-Commerce (2511.11017v1)

Published 14 Nov 2025 in cs.AI

Abstract: The rapid expansion of e-commerce platforms generates vast amounts of unstructured product data, creating significant challenges for information retrieval, recommendation systems, and data analytics. Knowledge Graphs (KGs) offer a structured, interpretable format to organize such data, yet constructing product-specific KGs remains a complex and manual process. This paper introduces a fully automated, AI agent-driven framework for constructing product knowledge graphs directly from unstructured product descriptions. Leveraging LLMs, our method operates in three stages using dedicated agents: ontology creation and expansion, ontology refinement, and knowledge graph population. This agent-based approach ensures semantic coherence, scalability, and high-quality output without relying on predefined schemas or handcrafted extraction rules. We evaluate the system on a real-world dataset of air conditioner product descriptions, demonstrating strong performance in both ontology generation and KG population. The framework achieves over 97\% property coverage and minimal redundancy, validating its effectiveness and practical applicability. Our work highlights the potential of LLMs to automate structured knowledge extraction in retail, providing a scalable path toward intelligent product data integration and utilization.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.