Papers
Topics
Authors
Recent
2000 character limit reached

GraphToxin: Reconstructing Full Unlearned Graphs from Graph Unlearning (2511.10936v1)

Published 14 Nov 2025 in cs.LG, cs.AI, and cs.CR

Abstract: Graph unlearning has emerged as a promising solution for complying with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks. These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the inherent functionality of graph unlearning. In this work, we propose GraphToxin, the first graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide a fine-grained guidance for full unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning - it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple node removals under both white-box and black-box setting. We highlight the necessity of a worst-case analysis and propose a comprehensive evaluation framework to systematically assess the attack performance under both random and worst-case node removals. This provides a more robust and realistic measure of the vulnerability of graph unlearning methods to graph reconstruction attacks. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, we show that existing defense mechanisms are largely ineffective against this attack and, in some cases, can even amplify its performance. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for the development of more effective and robust defense strategies against this attack.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.