Papers
Topics
Authors
Recent
2000 character limit reached

Automated Analysis of Learning Outcomes and Exam Questions Based on Bloom's Taxonomy (2511.10903v1)

Published 14 Nov 2025 in cs.CL and cs.AI

Abstract: This paper explores the automatic classification of exam questions and learning outcomes according to Bloom's Taxonomy. A small dataset of 600 sentences labeled with six cognitive categories - Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation - was processed using traditional ML models (Naive Bayes, Logistic Regression, Support Vector Machines), recurrent neural network architectures (LSTM, BiLSTM, GRU, BiGRU), transformer-based models (BERT and RoBERTa), and LLMs (OpenAI, Gemini, Ollama, Anthropic). Each model was evaluated under different preprocessing and augmentation strategies (for example, synonym replacement, word embeddings, etc.). Among traditional ML approaches, Support Vector Machines (SVM) with data augmentation achieved the best overall performance, reaching 94 percent accuracy, recall, and F1 scores with minimal overfitting. In contrast, the RNN models and BERT suffered from severe overfitting, while RoBERTa initially overcame it but began to show signs as training progressed. Finally, zero-shot evaluations of LLMs indicated that OpenAI and Gemini performed best among the tested LLMs, achieving approximately 0.72-0.73 accuracy and comparable F1 scores. These findings highlight the challenges of training complex deep models on limited data and underscore the value of careful data augmentation and simpler algorithms (such as augmented SVM) for Bloom's Taxonomy classification.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.