Papers
Topics
Authors
Recent
2000 character limit reached

CLIPPan: Adapting CLIP as A Supervisor for Unsupervised Pansharpening (2511.10896v1)

Published 14 Nov 2025 in eess.IV, cs.AI, and cs.CV

Abstract: Despite remarkable advancements in supervised pansharpening neural networks, these methods face domain adaptation challenges of resolution due to the intrinsic disparity between simulated reduced-resolution training data and real-world full-resolution scenarios.To bridge this gap, we propose an unsupervised pansharpening framework, CLIPPan, that enables model training at full resolution directly by taking CLIP, a visual-LLM, as a supervisor. However, directly applying CLIP to supervise pansharpening remains challenging due to its inherent bias toward natural images and limited understanding of pansharpening tasks. Therefore, we first introduce a lightweight fine-tuning pipeline that adapts CLIP to recognize low-resolution multispectral, panchromatic, and high-resolution multispectral images, as well as to understand the pansharpening process. Then, building on the adapted CLIP, we formulate a novel \textit{loss integrating semantic language constraints}, which aligns image-level fusion transitions with protocol-aligned textual prompts (e.g., Wald's or Khan's descriptions), thus enabling CLIPPan to use language as a powerful supervisory signal and guide fusion learning without ground truth. Extensive experiments demonstrate that CLIPPan consistently improves spectral and spatial fidelity across various pansharpening backbones on real-world datasets, setting a new state of the art for unsupervised full-resolution pansharpening.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.