Short-Window Sliding Learning for Real-Time Violence Detection via LLM-based Auto-Labeling (2511.10866v1)
Abstract: This paper proposes a Short-Window Sliding Learning framework for real-time violence detection in CCTV footages. Unlike conventional long-video training approaches, the proposed method divides videos into 1-2 second clips and applies LLM-based auto-caption labeling to construct fine-grained datasets. Each short clip fully utilizes all frames to preserve temporal continuity, enabling precise recognition of rapid violent events. Experiments demonstrate that the proposed method achieves 95.25\% accuracy on RWF-2000 and significantly improves performance on long videos (UCF-Crime: 83.25\%), confirming its strong generalization and real-time applicability in intelligent surveillance systems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.