Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GFT: Graph Feature Tuning for Efficient Point Cloud Analysis (2511.10799v1)

Published 13 Nov 2025 in cs.CV

Abstract: Parameter-efficient fine-tuning (PEFT) significantly reduces computational and memory costs by updating only a small subset of the model's parameters, enabling faster adaptation to new tasks with minimal loss in performance. Previous studies have introduced PEFTs tailored for point cloud data, as general approaches are suboptimal. To further reduce the number of trainable parameters, we propose a point-cloud-specific PEFT, termed Graph Features Tuning (GFT), which learns a dynamic graph from initial tokenized inputs of the transformer using a lightweight graph convolution network and passes these graph features to deeper layers via skip connections and efficient cross-attention modules. Extensive experiments on object classification and segmentation tasks show that GFT operates in the same domain, rivalling existing methods, while reducing the trainable parameters. Code is at https://github.com/manishdhakal/GFT.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: