Papers
Topics
Authors
Recent
2000 character limit reached

Limitations of Quantum Advantage in Unsupervised Machine Learning (2511.10709v1)

Published 13 Nov 2025 in quant-ph

Abstract: Machine learning models are used for pattern recognition analysis of big data, without direct human intervention. The task of unsupervised learning is to find the probability distribution that would best describe the available data, and then use it to make predictions for observables of interest. Classical models generally fit the data to Boltzmann distribution of Hamiltonians with a large number of tunable parameters. Quantum extensions of these models replace classical probability distributions with quantum density matrices. An advantage can be obtained only when features of density matrices that are absent in classical probability distributions are exploited. Such situations depend on the input data as well as the targeted observables. Explicit examples are discussed that bring out the constraints limiting possible quantum advantage. The problem-dependent extent of quantum advantage has implications for both data analysis and sensing applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.