StyleBreak: Revealing Alignment Vulnerabilities in Large Audio-Language Models via Style-Aware Audio Jailbreak (2511.10692v1)
Abstract: Large Audio-LLMs (LAMs) have recently enabled powerful speech-based interactions by coupling audio encoders with LLMs. However, the security of LAMs under adversarial attacks remains underexplored, especially through audio jailbreaks that craft malicious audio prompts to bypass alignment. Existing efforts primarily rely on converting text-based attacks into speech or applying shallow signal-level perturbations, overlooking the impact of human speech's expressive variations on LAM alignment robustness. To address this gap, we propose StyleBreak, a novel style-aware audio jailbreak framework that systematically investigates how diverse human speech attributes affect LAM alignment robustness. Specifically, StyleBreak employs a two-stage style-aware transformation pipeline that perturbs both textual content and audio to control linguistic, paralinguistic, and extralinguistic attributes. Furthermore, we develop a query-adaptive policy network that automatically searches for adversarial styles to enhance the efficiency of LAM jailbreak exploration. Extensive evaluations demonstrate that LAMs exhibit critical vulnerabilities when exposed to diverse human speech attributes. Moreover, StyleBreak achieves substantial improvements in attack effectiveness and efficiency across multiple attack paradigms, highlighting the urgent need for more robust alignment in LAMs.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.