Hybrid Quantum Transformer for Language Generation (2511.10653v1)
Abstract: Although quantum computing has been increasingly applied to replace classical computation, most existing quantum or hybrid models remain confined to simple tasks, with no successful application to large-scale natural language generation to date. In this work, we present the first hybrid quantum-classical LLM for natural language generation, HyQuT, capable of performing coherent and context-aware dialogue. The proposed architecture integrates variational quantum circuits (VQCs) into the Transformer framework at both 8M and 150M parameter scales. Experimental results show that a minimal number of qubits (10 qubits with 80 quantum gates) can replace about 10% of the classical parameters in the 150M-parameter model, while achieving comparable convergence stability and generation quality. This study provides an early demonstration of the feasibility of integrating quantum computing to large-scale generative LLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.