Papers
Topics
Authors
Recent
2000 character limit reached

Bi-Level Contextual Bandits for Individualized Resource Allocation under Delayed Feedback (2511.10572v2)

Published 13 Nov 2025 in cs.AI and cs.LG

Abstract: Equitably allocating limited resources in high-stakes domains-such as education, employment, and healthcare-requires balancing short-term utility with long-term impact, while accounting for delayed outcomes, hidden heterogeneity, and ethical constraints. However, most learning-based allocation frameworks either assume immediate feedback or ignore the complex interplay between individual characteristics and intervention dynamics. We propose a novel bi-level contextual bandit framework for individualized resource allocation under delayed feedback, designed to operate in real-world settings with dynamic populations, capacity constraints, and time-sensitive impact. At the meta level, the model optimizes subgroup-level budget allocations to satisfy fairness and operational constraints. At the base level, it identifies the most responsive individuals within each group using a neural network trained on observational data, while respecting cooldown windows and delayed treatment effects modeled via resource-specific delay kernels. By explicitly modeling temporal dynamics and feedback delays, the algorithm continually refines its policy as new data arrive, enabling more responsive and adaptive decision-making. We validate our approach on two real-world datasets from education and workforce development, showing that it achieves higher cumulative outcomes, better adapts to delay structures, and ensures equitable distribution across subgroups. Our results highlight the potential of delay-aware, data-driven decision-making systems to improve institutional policy and social welfare.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.