Noise-proofing Universal Portfolio Shrinkage (2511.10478v1)
Abstract: We enhance the Universal Portfolio Shrinkage Approximator (UPSA) of Kelly et al. (2023) by making it more robust with respect to estimation noise and covariate shift. UPSA optimizes the realized Sharpe ratio using a relatively small calibration window, leveraging ridge penalties and cross-validation to yield better portfolios. Yet, it still suffers from the staggering amount of noise in financial data. We propose two methods to make UPSA more robust and improve its efficiency: time-averaging of the optimal penalty weights and using the Average Oracle correlation eigenvalues to make covariance matrices less noisy and more robust to covariate shift. Combining these two long-term averages outperforms UPSA by a large margin in most specifications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.