Papers
Topics
Authors
Recent
2000 character limit reached

Domain Adaptation for Camera-Specific Image Characteristics using Shallow Discriminators (2511.10424v1)

Published 13 Nov 2025 in eess.IV

Abstract: Each image acquisition setup leads to its own camera-specific image characteristics degrading the image quality. In learning-based perception algorithms, characteristics occurring during the application phase, but absent in the training data, lead to a domain gap impeding the performance. Previously, pixel-level domain adaptation through unpaired learning of the pristine-to-distorted mapping function has been proposed. In this work, we propose shallow discriminator architectures to address limitations of these approaches. We show that a smaller receptive field size improves learning of unknown image distortions by more accurately reproducing local distortion characteristics at a low network complexity. In a domain adaptation setup for instance segmentation, we achieve mean average precision increases over previous methods of up to 0.15 for individual distortions and up to 0.16 for camera-specific image characteristics in a simplified camera model. In terms of number of parameters, our approach matches the complexity of one state of the art method while reducing complexity by a factor of 20 compared to another, demonstrating superior efficiency without compromising performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.