Papers
Topics
Authors
Recent
2000 character limit reached

Simulating Misinformation Propagation in Social Networks using Large Language Models (2511.10384v1)

Published 13 Nov 2025 in cs.SI, cs.AI, cs.CL, and cs.CY

Abstract: Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model LLM personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.