Papers
Topics
Authors
Recent
2000 character limit reached

Sub-diffusive Black-Scholes model and Girsanov transform for sub-diffusions (2511.10371v1)

Published 13 Nov 2025 in math.PR

Abstract: We propose a novel Black-Scholes model under which the stock price processes are modeled by stochastic differential equations driven by sub-diffusions. The new framework can capture the less financial activity phenomenon during the bear markets while having the classical Black- Scholes model as its special case. The sub-diffusive spot market is arbitrage-free but is in general incomplete. We investigate the pricing for European-style contingent claims under this new model. For this, we study the Girsanov transform for sub-diffusions and use it to find risk-neutral probability measures for the new Black-Scholes model. Finally, we derive the explicit formula for the price of European call options and show that it can be determined by a partial differential equation (PDE) involving a fractional derivative in time, which we coin a time-fractional Black-Scholes PDE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: