Beyond Single-Step Updates: Reinforcement Learning of Heuristics with Limited-Horizon Search (2511.10264v1)
Abstract: Many sequential decision-making problems can be formulated as shortest-path problems, where the objective is to reach a goal state from a given starting state. Heuristic search is a standard approach for solving such problems, relying on a heuristic function to estimate the cost to the goal from any given state. Recent approaches leverage reinforcement learning to learn heuristics by applying deep approximate value iteration. These methods typically rely on single-step Bellman updates, where the heuristic of a state is updated based on its best neighbor and the corresponding edge cost. This work proposes a generalized approach that enhances both state sampling and heuristic updates by performing limited-horizon searches and updating each state's heuristic based on the shortest path to the search frontier, incorporating both edge costs and the heuristic values of frontier states.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.