Selection of Supervised Learning-based Sparse Matrix Reordering Algorithms (2511.10180v1)
Abstract: Sparse matrix ordering is a vital optimization technique often employed for solving large-scale sparse matrices. Its goal is to minimize the matrix bandwidth by reorganizing its rows and columns, thus enhancing efficiency. Conventional methods for algorithm selection usually depend on brute-force search or empirical knowledge, lacking the ability to adjust to diverse sparse matrix structures.As a result, we have introduced a supervised learning-based model for choosing sparse matrix reordering algorithms. This model grasps the correlation between matrix characteristics and commonly utilized reordering algorithms, facilitating the automated and intelligent selection of the suitable sparse matrix reordering algorithm. Experiments conducted on the Florida sparse matrix dataset reveal that our model can accurately predict the optimal reordering algorithm for various matrices, leading to a 55.37% reduction in solution time compared to solely using the AMD reordering algorithm, with an average speedup ratio of 1.45.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.