Papers
Topics
Authors
Recent
2000 character limit reached

Odd-Cycle-Packing-treewidth: On the Maximum Independent Set problem in odd-minor-free graph classes (2511.10019v1)

Published 13 Nov 2025 in math.CO and cs.DM

Abstract: We introduce the tree-decomposition-based graph parameter Odd-Cycle-Packing-treewidth (OCP-tw) as a width parameter that asks to decompose a given graph into pieces of bounded odd cycle packing number. The parameter OCP-tw is monotone under the odd-minor-relation and we provide an analogue to the celebrated Grid Theorem of Robertson and Seymour for OCP-tw. That is, we identify two infinite families of grid-like graphs whose presence as odd-minors implies large OCP-tw and prove that their absence implies bounded OCP-tw. This structural result is constructive and implies a 2poly(k)poly(n)-time parameterized poly(k)-approximation algorithm for OCP-tw. Moreover, we show that the (weighted) Maximum Independent Set problem (MIS) can be solved in polynomial time on graphs of bounded OCP-tw. Finally, we lift the concept of OCP-tw to a parameter for matrices of integer programs. To this end, we show that our strategy can be applied to efficiently solve integer programs whose matrices can be "tree-decomposed" into totally delta-modular matrices with at most two non-zero entries per row.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: