Papers
Topics
Authors
Recent
2000 character limit reached

SeQuant Framework for Symbolic and Numerical Tensor Algebra. I. Core Capabilities (2511.09943v1)

Published 13 Nov 2025 in cs.MS, cs.SC, physics.chem-ph, physics.comp-ph, and quant-ph

Abstract: SeQuant is an open-source library for symbolic algebra of tensors over commutative (scalar) and non-commutative (operator) rings. The key innovation supporting most of its functionality is a graph-theoretic tensor network (TN) canonicalizer that can handle tensor networks with symmetries faster than their standard group-theoretic counterparts. The TN canonicalizer is used for routine simplification of conventional tensor expressions, for optimizing application of Wick's theorem (used to canonicalize products of tensors over operator fields), and for manipulation of the intermediate representation leading to the numerical evaluation. Notable features of SeQuant include support for noncovariant tensor networks (which often arise from tensor decompositions) and for tensors with modes that depend parametrically on indices of other tensor modes (such dependencies between degrees of freedom are naturally viewed as nesting of tensors, "tensors of tensors" arising in block-wise data compressions in data science and modern quantum simulation). SeQuant blurs the line between pure symbolic manipulation/code generation and numerical evaluation by including compiler-like components to optimize and directly interpret tensor expressions using external numerical tensor algebra frameworks. The SeQuant source code is available at https://github.com/ValeevGroup/SeQuant.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com