Papers
Topics
Authors
Recent
2000 character limit reached

AdaptViG: Adaptive Vision GNN with Exponential Decay Gating (2511.09942v1)

Published 13 Nov 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Vision Graph Neural Networks (ViGs) offer a new direction for advancements in vision architectures. While powerful, ViGs often face substantial computational challenges stemming from their graph construction phase, which can hinder their efficiency. To address this issue we propose AdaptViG, an efficient and powerful hybrid Vision GNN that introduces a novel graph construction mechanism called Adaptive Graph Convolution. This mechanism builds upon a highly efficient static axial scaffold and a dynamic, content-aware gating strategy called Exponential Decay Gating. This gating mechanism selectively weighs long-range connections based on feature similarity. Furthermore, AdaptViG employs a hybrid strategy, utilizing our efficient gating mechanism in the early stages and a full Global Attention block in the final stage for maximum feature aggregation. Our method achieves a new state-of-the-art trade-off between accuracy and efficiency among Vision GNNs. For instance, our AdaptViG-M achieves 82.6% top-1 accuracy, outperforming ViG-B by 0.3% while using 80% fewer parameters and 84% fewer GMACs. On downstream tasks, AdaptViG-M obtains 45.8 mIoU, 44.8 APbox, and 41.1 APmask, surpassing the much larger EfficientFormer-L7 by 0.7 mIoU, 2.2 APbox, and 2.1 APmask, respectively, with 78% fewer parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.