Papers
Topics
Authors
Recent
2000 character limit reached

TARG: Training-Free Adaptive Retrieval Gating for Efficient RAG (2511.09803v1)

Published 12 Nov 2025 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) improves factuality but retrieving for every query often hurts quality while inflating tokens and latency. We propose Training-free Adaptive Retrieval Gating (TARG), a single-shot policy that decides when to retrieve using only a short, no-context draft from the base model. From the draft's prefix logits, TARG computes lightweight uncertainty scores: mean token entropy, a margin signal derived from the top-1/top-2 logit gap via a monotone link, or small-N variance across a handful of stochastic prefixes, and triggers retrieval only when the score exceeds a threshold. The gate is model agnostic, adds only tens to hundreds of draft tokens, and requires no additional training or auxiliary heads. On NQ-Open, TriviaQA, and PopQA, TARG consistently shifts the accuracy-efficiency frontier: compared with Always-RAG, TARG matches or improves EM/F1 while reducing retrieval by 70-90% and cutting end-to-end latency, and it remains close to Never-RAG in overhead. A central empirical finding is that under modern instruction-tuned LLMs the margin signal is a robust default (entropy compresses as backbones sharpen), with small-N variance offering a conservative, budget-first alternative. We provide ablations over gate type and prefix length and use a delta-latency view to make budget trade-offs explicit.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.