Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Investigation of Feature Selection and Pooling Methods for Environmental Sound Classification (2511.09802v1)

Published 12 Nov 2025 in eess.SP and cs.SD

Abstract: This paper explores the impact of dimensionality reduction and pooling methods for Environmental Sound Classification (ESC) using lightweight CNNs. We evaluate Sparse Salient Region Pooling (SSRP) and its variants, SSRP-Basic (SSRP-B) and SSRP-Top-K (SSRP-T), under various hyperparameter settings and compare them with Principal Component Analysis (PCA). Experiments on the ESC-50 dataset demonstrate that SSRP-T achieves up to 80.69 % accuracy, significantly outperforming both the baseline CNN (66.75 %) and the PCA-reduced model (37.60 %). Our findings confirm that a well-tuned sparse pooling strategy provides a robust, efficient, and high-performing solution for ESC tasks, particularly in resource-constrained scenarios where balancing accuracy and computational cost is crucial.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: