Papers
Topics
Authors
Recent
2000 character limit reached

FlowCast: Advancing Precipitation Nowcasting with Conditional Flow Matching (2511.09731v1)

Published 12 Nov 2025 in cs.LG

Abstract: Radar-based precipitation nowcasting, the task of forecasting short-term precipitation fields from previous radar images, is a critical problem for flood risk management and decision-making. While deep learning has substantially advanced this field, two challenges remain fundamental: the uncertainty of atmospheric dynamics and the efficient modeling of high-dimensional data. Diffusion models have shown strong promise by producing sharp, reliable forecasts, but their iterative sampling process is computationally prohibitive for time-critical applications. We introduce FlowCast, the first model to apply Conditional Flow Matching (CFM) to precipitation nowcasting. Unlike diffusion, CFM learns a direct noise-to-data mapping, enabling rapid, high-fidelity sample generation with drastically fewer function evaluations. Our experiments demonstrate that FlowCast establishes a new state-of-the-art in predictive accuracy. A direct comparison further reveals the CFM objective is both more accurate and significantly more efficient than a diffusion objective on the same architecture, maintaining high performance with significantly fewer sampling steps. This work positions CFM as a powerful and practical alternative for high-dimensional spatiotemporal forecasting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.