History-Aware Trajectory k-Anonymization Using an FPGA-Based Hardware Accelerator for Real-Time Location Services (2511.09688v1)
Abstract: Our previous work established the feasibility of FPGA-based real-time trajectory anonymization, a critical task for protecting user privacy in modern location-based services (LBS). However, that pioneering approach relied exclusively on shortest-path computations, which can fail to capture re- alistic travel behavior and thus reduce the utility of the anonymized data. To address this limitation, this paper introduces a novel, history-aware trajectory k-anonymization methodology and presents an advanced FPGA-based hardware architecture to implement it. Our proposed architecture uniquely integrates par- allel history-based trajectory searches with conventional shortest- path finding, using a custom fixed-point counting module to ac- curately weigh contributions from historical data. This approach enables the system to prioritize behaviorally common routes over geometrically shorter but less-traveled paths. The FPGA implementation demonstrates that our new architecture achieves a real-time throughput of over 6,000 records/s, improves data retention by up to 1.2% compared to our previous shortest-path- only design, and preserves major arterial roads more effectively. These results signify a key advancement, enabling high-fidelity, history-aware anonymization that preserves both privacy and behavioral accuracy under the strict latency constraints of LBS.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.