Rebellion: Noise-Robust Reasoning Training for Audio Reasoning Models (2511.09682v1)
Abstract: Instilling reasoning capabilities in large models (LMs) using reasoning training (RT) significantly improves LMs' performances. Thus Audio Reasoning Models (ARMs), i.e., audio LMs that can reason, are becoming increasingly popular. However, no work has studied the safety of ARMs against jailbreak attacks that aim to elicit harmful responses from target models. To this end, first, we show that standard RT with appropriate safety reasoning data can protect ARMs from vanilla audio jailbreaks, but cannot protect them against our proposed simple yet effective jailbreaks. We show that this is because of the significant representation drift between vanilla and advanced jailbreaks which forces the target ARMs to emit harmful responses. Based on this observation, we propose Rebellion, a robust RT that trains ARMs to be robust to the worst-case representation drift. All our results are on Qwen2-Audio; they demonstrate that Rebellion: 1) can protect against advanced audio jailbreaks without compromising performance on benign tasks, and 2) significantly improves accuracy-safety trade-off over standard RT method.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.