Papers
Topics
Authors
Recent
2000 character limit reached

An explainable Recursive Feature Elimination to detect Advanced Persistent Threats using Random Forest classifier (2511.09603v1)

Published 12 Nov 2025 in cs.CR and cs.AI

Abstract: Intrusion Detection Systems (IDS) play a vital role in modern cybersecurity frameworks by providing a primary defense mechanism against sophisticated threat actors. In this paper, we propose an explainable intrusion detection framework that integrates Recursive Feature Elimination (RFE) with Random Forest (RF) to enhance detection of Advanced Persistent Threats (APTs). By using CICIDS2017 dataset, the approach begins with comprehensive data preprocessing and narrows down the most significant features via RFE. A Random Forest (RF) model was trained on the refined feature set, with SHapley Additive exPlanations (SHAP) used to interpret the contribution of each selected feature. Our experiment demonstrates that the explainable RF-RFE achieved a detection accuracy of 99.9%, reducing false positive and computational cost in comparison to traditional classifiers. The findings underscore the effectiveness of integrating explainable AI and feature selection to develop a robust, transparent, and deployable IDS solution.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.