Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Density ratio model for multiple types of survival data with empirical likelihood (2511.09398v1)

Published 12 Nov 2025 in stat.ME and stat.AP

Abstract: The density ratio model (DRM) is a semiparametric model that relates the distributions from multiple samples to a nonparametrically defined reference distribution via exponential tilting, with finite-dimensional parameters governing their differences in shape. When multiple types of partially observed (censored/truncated) failure time data are collected in an observational study, the DRM can be utilized to conduct a single unified analysis of the combined data. In this paper, we extend the methodology for censored length-biased/truncated data to the DRM framework and formulate the inference using empirical likelihood. We develop an EM algorithm to compute the DRM-based maximum empirical likelihood estimators of the model parameters and survival function, and assess its performance through extensive simulations under correct model specification, overspecification, and misspecification, across a range of failure-time distributions and censoring proportions. We also illustrate the efficacy of our method by analyzing the duration of time spent from admission to discharge in a Montreal-area hospital in Canada. The R code that implements our method is available on GitHub at \href{https://github.com/gozhang/DRM-combined-survival}{DRM-combined-survival}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: