Papers
Topics
Authors
Recent
2000 character limit reached

TempoQL: A Readable, Precise, and Portable Query System for Electronic Health Record Data (2511.09337v1)

Published 12 Nov 2025 in cs.HC and cs.DB

Abstract: Electronic health record (EHR) data is an essential data source for machine learning for health, but researchers and clinicians face steep barriers in extracting and validating EHR data for modeling. Existing tools incur trade-offs between expressivity and usability and are typically specialized to a single data standard, making it difficult to write temporal queries that are ready for modern model-building pipelines and adaptable to new datasets. This paper introduces TempoQL, a Python-based toolkit designed to lower these barriers. TempoQL provides a simple, human-readable language for temporal queries; support for multiple EHR data standards, including OMOP, MEDS, and others; and an interactive notebook-based query interface with optional LLM authoring assistance. Through a performance evaluation and two use cases on different datasets, we demonstrate that TempoQL simplifies the creation of cohorts for machine learning while maintaining precision, speed, and reproducibility.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: