Papers
Topics
Authors
Recent
2000 character limit reached

Distribution-Based Feature Attribution for Explaining the Predictions of Any Classifier (2511.09332v1)

Published 12 Nov 2025 in cs.LG and cs.AI

Abstract: The proliferation of complex, black-box AI models has intensified the need for techniques that can explain their decisions. Feature attribution methods have become a popular solution for providing post-hoc explanations, yet the field has historically lacked a formal problem definition. This paper addresses this gap by introducing a formal definition for the problem of feature attribution, which stipulates that explanations be supported by an underlying probability distribution represented by the given dataset. Our analysis reveals that many existing model-agnostic methods fail to meet this criterion, while even those that do often possess other limitations. To overcome these challenges, we propose Distributional Feature Attribution eXplanations (DFAX), a novel, model-agnostic method for feature attribution. DFAX is the first feature attribution method to explain classifier predictions directly based on the data distribution. We show through extensive experiments that DFAX is more effective and efficient than state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.