Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DualFete: Revisiting Teacher-Student Interactions from a Feedback Perspective for Semi-supervised Medical Image Segmentation (2511.09319v1)

Published 12 Nov 2025 in cs.CV

Abstract: The teacher-student paradigm has emerged as a canonical framework in semi-supervised learning. When applied to medical image segmentation, the paradigm faces challenges due to inherent image ambiguities, making it particularly vulnerable to erroneous supervision. Crucially, the student's iterative reconfirmation of these errors leads to self-reinforcing bias. While some studies attempt to mitigate this bias, they often rely on external modifications to the conventional teacher-student framework, overlooking its intrinsic potential for error correction. In response, this work introduces a feedback mechanism into the teacher-student framework to counteract error reconfirmations. Here, the student provides feedback on the changes induced by the teacher's pseudo-labels, enabling the teacher to refine these labels accordingly. We specify that this interaction hinges on two key components: the feedback attributor, which designates pseudo-labels triggering the student's update, and the feedback receiver, which determines where to apply this feedback. Building on this, a dual-teacher feedback model is further proposed, which allows more dynamics in the feedback loop and fosters more gains by resolving disagreements through cross-teacher supervision while avoiding consistent errors. Comprehensive evaluations on three medical image benchmarks demonstrate the method's effectiveness in addressing error propagation in semi-supervised medical image segmentation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: