Papers
Topics
Authors
Recent
2000 character limit reached

Enriching Knowledge Distillation with Cross-Modal Teacher Fusion (2511.09286v1)

Published 12 Nov 2025 in cs.CV

Abstract: Multi-teacher knowledge distillation (KD), a more effective technique than traditional single-teacher methods, transfers knowledge from expert teachers to a compact student model using logit or feature matching. However, most existing approaches lack knowledge diversity, as they rely solely on unimodal visual information, overlooking the potential of cross-modal representations. In this work, we explore the use of CLIP's vision-language knowledge as a complementary source of supervision for KD, an area that remains largely underexplored. We propose a simple yet effective framework that fuses the logits and features of a conventional teacher with those from CLIP. By incorporating CLIP's multi-prompt textual guidance, the fused supervision captures both dataset-specific and semantically enriched visual cues. Beyond accuracy, analysis shows that the fused teacher yields more confident and reliable predictions, significantly increasing confident-correct cases while reducing confidently wrong ones. Moreover, fusion with CLIP refines the entire logit distribution, producing semantically meaningful probabilities for non-target classes, thereby improving inter-class consistency and distillation quality. Despite its simplicity, the proposed method, Enriching Knowledge Distillation (RichKD), consistently outperforms most existing baselines across multiple benchmarks and exhibits stronger robustness under distribution shifts and input corruptions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: