Papers
Topics
Authors
Recent
2000 character limit reached

On minimum Venn diagrams (2511.09230v1)

Published 12 Nov 2025 in math.CO and cs.DM

Abstract: An $n$-Venn diagram is a diagram in the plane consisting of $n$ simple closed curves that intersect only finitely many times such that each of the $2n$ possible intersections is represented by a single connected region. An $n$-Venn diagram has at most $2n-2$ crossings, and if this maximum number of crossings is attained, then only two curves intersect in every crossing. To complement this, Bultena and Ruskey considered $n$-Venn diagrams that minimize the number of crossings, which implies that many curves intersect in every crossing. Specifically, they proved that the total number of crossings in any $n$-Venn diagram is at least $L_n:=\lceil\frac{2n-2}{n-1}\rceil$, and if this lower bound is attained then essentially all $n$ curves intersect in every crossing. Diagrams achieving this bound are called minimum Venn diagrams, and are known only for $n\leq 7$. Bultena and Ruskey conjectured that they exist for all $n\geq 8$. In this work, we establish an asympototic version of their conjecture. For $n=8$ we construct a diagram with 40 crossings, only 3 more than the lower bound $L_8=37$. Furthermore, for every $n$ of the form $n=2k$ for some integer $k\geq 4$, we construct an $n$-Venn diagram with at most $(1+\frac{33}{8n})L_n=(1+o(1))L_n$ many crossings. Via a doubling trick this also gives $(n+m)$-Venn diagrams for all $0\leq m<n$ with at most $40\cdot 2m$ crossings for $n=8$ and at most $(1+\frac{33}{8n})\frac{n+m}{n}L_{n+m}=(2+o(1))L_{n+m}$ many crossings for $k\geq 4$. In particular, we obtain $n$-Venn diagrams with the smallest known number of crossings for all $n\geq 8$. Our constructions are based on partitions of the hypercube into isometric paths and cycles, using a result of Ramras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: