Papers
Topics
Authors
Recent
2000 character limit reached

Context-Aware Dynamic Chunking for Streaming Tibetan Speech Recognition (2511.09085v1)

Published 12 Nov 2025 in cs.CL

Abstract: In this work, we propose a streaming speech recognition framework for Amdo Tibetan, built upon a hybrid CTC/Atten-tion architecture with a context-aware dynamic chunking mechanism. The proposed strategy adaptively adjusts chunk widths based on encoding states, enabling flexible receptive fields, cross-chunk information exchange, and robust adaptation to varying speaking rates, thereby alleviating the context truncation problem of fixed-chunk methods. To further capture the linguistic characteristics of Tibetan, we construct a lexicon grounded in its orthographic principles, providing linguistically motivated modeling units. During decoding, an external LLM is integrated to enhance semantic consistency and improve recognition of long sentences. Experimental results show that the proposed framework achieves a word error rate (WER) of 6.23% on the test set, yielding a 48.15% relative improvement over the fixed-chunk baseline, while significantly reducing recognition latency and maintaining performance close to global decoding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.