Toward an Intrusion Detection System for a Virtualization Framework in Edge Computing (2511.09068v1)
Abstract: Edge computing pushes computation closer to data sources, but it also expands the attack surface on resource-constrained devices. This work explores the deployment of the Lightweight Deep Anomaly Detection for Network Traffic (LDPI) integrated as an isolated service within a virtualization framework that provides security by separation. LDPI, adopting a Deep Learning approach, achieved strong training performance, reaching AUC 0.999 (5-fold mean) across the evaluated packet-window settings (n, l), with high F1 at conservative operating points. We deploy LDPI on a laptop-class edge node and evaluate its overhead and performance in two scenarios: (i) comparing it with representative signature-based IDSes (Suricata and Snort) deployed on the same framework under identical workloads, and (ii) while detecting network flooding attacks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.