Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dense Cross-Scale Image Alignment With Fully Spatial Correlation and Just Noticeable Difference Guidance (2511.09028v1)

Published 12 Nov 2025 in cs.CV

Abstract: Existing unsupervised image alignment methods exhibit limited accuracy and high computational complexity. To address these challenges, we propose a dense cross-scale image alignment model. It takes into account the correlations between cross-scale features to decrease the alignment difficulty. Our model supports flexible trade-offs between accuracy and efficiency by adjusting the number of scales utilized. Additionally, we introduce a fully spatial correlation module to further improve accuracy while maintaining low computational costs. We incorporate the just noticeable difference to encourage our model to focus on image regions more sensitive to distortions, eliminating noticeable alignment errors. Extensive quantitative and qualitative experiments demonstrate that our method surpasses state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: