Convergence and Stability Analysis of Self-Consuming Generative Models with Heterogeneous Human Curation (2511.09002v1)
Abstract: Self-consuming generative models have received significant attention over the last few years. In this paper, we study a self-consuming generative model with heterogeneous preferences that is a generalization of the model in Ferbach et al. (2024). The model is retrained round by round using real data and its previous-round synthetic outputs. The asymptotic behavior of the retraining dynamics is investigated across four regimes using different techniques including the nonlinear Perron--Frobenius theory. Our analyses improve upon that of Ferbach et al. (2024) and provide convergence results in settings where the well-known Banach contraction mapping arguments do not apply. Stability and non-stability results regarding the retraining dynamics are also given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.